Control of mTORC1 signaling by the Opitz syndrome protein MID1.
نویسندگان
چکیده
Mutations in the MID1 gene are causally linked to X-linked Opitz BBB/G syndrome (OS), a congenital disorder that primarily affects the formation of diverse ventral midline structures. The MID1 protein has been shown to function as an E3 ligase targeting the catalytic subunit of protein phosphatase 2A (PP2A-C) for ubiquitin-mediated degradation. However, the molecular pathways downstream of the MID1/PP2A axis that are dysregulated in OS and that translate dysfunctional MID1 and elevated levels of PP2A-C into the OS phenotype are poorly understood. Here, we show that perturbations in MID1/PP2A affect mTORC1 signaling. Increased PP2A levels, resulting from proteasome inhibition or depletion of MID1, lead to disruption of the mTOR/Raptor complex and down-regulated mTORC1 signaling. Congruously, cells derived from OS patients that carry MID1 mutations exhibit decreased mTORC1 formation, S6K1 phosphorylation, cell size, and cap-dependent translation, all of which is rescued by expression of wild-type MID1 or an activated mTOR allele. Our findings define mTORC1 signaling as a downstream pathway regulated by the MID1/PP2A axis, suggesting that mTORC1 plays a key role in OS pathogenesis.
منابع مشابه
Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells.
Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2A activity. Loss-of-function mutations in MID1 lead to the X-linked Opitz G/BBB syndrome characterized by defective midline development during embryogenesis. Here, we show that MID1 is strongly upregulated in murine cytotoxic lymphocytes (CTLs), and that it controls TCR signaling, centrosome traffi...
متن کاملMid1/Mid2 expression in craniofacial development and a literature review of X-linked opitz syndrome.
BACKGROUND Opitz syndrome (OS) is a genetic disorder that affects mainly the development of midline structures, including the craniofacial region, embryonic heart, and urogenital system. The manifestations of X-linked OS are believed to be results of a malfunctioned gene, MID1, whose product has been shown to have ubiquitin E3 ligase activity and regulate the turnover of microtubular protein ph...
متن کاملTHE EFFECT OF 4 WEEKS’ AEROBIC TRAINING ON THE CONTENT OF MTORC1 SIGNALING PATHWAY PROTEINS IN HEART TISSUE OF TYPE 1 DIABETES RATS
Background: The mTORC1 pathway is one of the important pathways for protein synthesis in the heart, which can lead to physiological or pathological hypertrophy. Diabetes can lead to defects in this pathway. The aim of this study was to examine the effect of 4 weeks’ aerobic training on the content of mTORC1 signaling pathway proteins in heart tissue of type 1 diabetes rats. Methods: In this ...
متن کاملPhosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4.
Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hy...
متن کاملMID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development.
The B-box family is an expanding new family of genes encoding proteins involved in diverse cellular functions such as developmental patterning and oncogenesis. A member of this protein family, MID1, is the gene responsible for the X-linked form of Opitz G/BBB syndrome, a developmental disorder characterized by defects of the midline structures. We now report the identification of MID2, a new tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 21 شماره
صفحات -
تاریخ انتشار 2011